Pages

Thursday, 22 January 2015

SPOJ PROBLEM 16211: BORING FACTORIALS

Problem Link: http://www.spoj.com/problems/DCEPC11B/


SUMMARY
Given two number n and p. Your task is to print answer i.e equal to n!%p

Logic
Wilson’s Theorem 
In number theoryWilson's theorem states that a natural number n > 1 is a prime number if and only if
(n-1)!\ \equiv\ -1 \pmod n.

 Now from this we can write:
(p-1)!     -1 (mod p)
1*2*3*.........*(n-1)*(n)*..............*(p-1)     -1 (mod p)
n!*(n+1)*...........*(p-1)      -1 (mod p)
n!      -1*[(n+1)*...............(p-2)*(p-1)]^-1 (mod p)
let a=[(n+1)*...............(p-2)*(p-1)]
so
n!≡-1*a^-1(mod p)

From Fermat's Theorem:

a^(p-1)  1(mod p)
multiply both side by a^-1
a^(p-2)   a^-1(mod p)
now simply we have to find a^(p-2) mod p

To View My Solution:


Monday, 19 January 2015

Find The Missing Number

FIND THE MISSING NUMBER


You are given a list of n-1 integers and these integers are in the range of 1 to n. There are no duplicates in list. One of the integers is missing in the list. Write an efficient code to find the missing integer.
Example:
I/P    [1, 2, 4, ,6, 3, 7, 8]
O/P    5

METHOD 1(Use sum formula)
Algorithm:
1. Get the sum of numbers 
       total = n*(n+1)/2
2  Subtract all the numbers from sum and
   you will get the missing number.

Code:
#include<stdio.h>
/* getMissingNo takes array and size of array as arguments*/
int getMissingNo (int a[], int n)
{
    int i, total;
    total  = (n+1)*(n+2)/2;  
    for ( i = 0; i< n; i++)
       total -= a[i];
    return total;
}
/*program to test above function */
int main()
{
    int a[] = {1,2,4,5,6};
    int miss = getMissingNo(a,5);
    printf("%d", miss);
    getchar();
}
Time Complexity: O(n)
METHOD 2(Use XOR)
  1) XOR all the array elements, let the result of XOR be X1.
  2) XOR all numbers from 1 to n, let XOR be X2.
  3) XOR of X1 and X2 gives the missing number.

Code:

#include<stdio.h>
/* getMissingNo takes array and size of array as arguments*/
int getMissingNo(int a[], int n)
{
    int i;
    int x1 = a[0]; /* For xor of all the elemets in arary */
    int x2 = 1; /* For xor of all the elemets from 1 to n+1 */
     
    for (i = 1; i< n; i++)
        x1 = x1^a[i];
            
    for ( i = 2; i <= n+1; i++)
        x2 = x2^i;        
    
    return (x1^x2);
}
/*program to test above function */
int main()
{
    int a[] = {1, 2, 4, 5, 6};
    int miss = getMissingNo(a, 5);
    printf("%d", miss);
    getchar();
}
Time Complexity: O(n)